Measuring possible adverse effects of plastics on humans or plastics in human body is far more difficult than on animals—unlike quail and fish, human subjects can’t intentionally be fed a diet of plastics. In laboratory tests, microplastics have been shown to cause damage to human cells, including both allergic reactions and cell death. But so far there have been no epidemiologic studies documenting, in a large group of people, a connection between exposure to microplastics and impacts on health and microplastics in blood.
Instead, research has involved small groups of people—a factor that limits conclusions that can be drawn beyond identifying the presence of microplastics in different parts of the body. A 2018 study found microplastics in the feces of eight people. Another study documented the presence of microplastics in the placentas of unborn babies. According to studies there is enough plastic in every human body that by extracting that much plastic, we can easily make one credit card, and we all have to pay the credit card bill in terms of our health or climate.
The recent study by Vethaak and his colleagues found plastics in the blood of 17 of 22 healthy blood donors; the lung study found microplastics in 11 of 13 lung samples taken from 11 patients. Virtually nothing is known about either group that would help inform the level and length of exposure—two essential attributes to determine harm.
In both studies the plastic particles found were only nanoplastics, which are smaller than one micrometer. The ones found in the blood study were small enough to have been inhaled—though Vethaak says it’s also possible they were ingested. Whether such particles can pass from the blood into other organs, especially into the brain, which is protected by a unique, dense network of cells that form a barrier, isn’t clear.
The lung study, done at University of Hull in the U.K., showed just how intrusive airborne particles can be. While the scientists expected to find plastic fibers in the lungs of surgical patients—earlier research had documented them in cadavers—they were stunned to find the highest number, of various shapes and sizes, embedded deep in the lower lung lobe. One of the fibers was two millimeters long.
“You would not expect to find microplastics in the smallest parts of the lung with the smallest diameter,” says Hull environmental ecologist Jeannette Rotchell. The study, she says, enables her team to move to the next level of questions and conduct lab studies using cells or tissue cultures of lung cells to discover the effects of the microplastics they found.
“There are many more questions, “I would like to know what levels are we exposed to in the course of our lives. What microplastics are we breathing in every day, whether working at home, going to the office, outdoors, cycling, running, in different environments. There’s a big knowledge gap.” trust me next pandemic will be due to climate injustice done by us.
#microplasticsinhumans
#microplasticsinblood
We use cookies on our website to give you the most relevant experience. By continuing to use the site, you agree to the use of cookies.